Resurrecting the Dead: Recovery of Organophosphorus Poisoned Acetylcholinesterase using Quinone Methide Precursors William K. Clay^a, Stacey K. Allen^a, Anne K. Buck^a, Brandon A. Slover^{a,b}, Rose K. Homoelle^a, Olivia A. Brooks^a, Kenny Q. Nguyen^a, Benjamin H. Clark^a, Nathan A. Warda, Matthew C. Fitzsimmonsa, Alex R. Lovinsa, Christopher T. Codognia, Ravali Kodea, Hailey G. Maina, D. Sophie Enseya, Jacob D. Weavera, Dennis M. Yanga, Emily G. Brooks^a, William Sosna^c, Claire Croutch^c, Craig A. McElroy^{b*}, Christopher S. Callam^{a*} and Christopher M. Hadad^{a*} ^a Department of Chemistry and Biochemistry, College of Arts and Sciences and ^b College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA ^c MRIGIobal, 425 Volker Blvd, Kansas City MO 64110 USA #### Introduction #### Acetylcholinesterase (AChE): - A vital enzyme located in the blood, as well as the central and peripheral nervous system - Activity due to a Ser-His-Glu catalytic triad with multiple amino acid residues working together #### Organophosphorus Nerve Agents and Pesticides: - Responsible for inhibition of AChE by phosphylation of the active site serine residue - Pesticides estimated to cause 3 million hospitalizations & 220,000 deaths annually¹ | OP Nerve Agents | | | | OP Pesticides | | | |-----------------|------------|------------|--------------------|-----------------|--------------------------|-------| | G-Series | | V-Series | Phosphotriesters | | | | | NC PO | F PO | F P O | 0
N
S P
O | | O ₂ N O O O O | F O O | | Tabun (GA) | Sarin (GB) | Soman (GD) | VX | Methyl Paraoxon | Ethyl Paraoxon | DFP | #### **OP Inhibition and Aging of AChE:** Inhibition of AChE can result in death by respiratory failure. OP-inhibited form can be reactivated to its native state with pyridinium oximes, like FDA-approved pralidoxime chloride (2-PAM). OP-inhibited enzyme can dealkylate to the "aged" form of AChE (shown in red below), that forms an oxyanion at the phosphylated serine residue. - The aged form of AChE is resistant to pyridinium oxime therapeutics. - Currently there are no approved therapeutics for the OP-aged form. **Hypothesis:** "resurrect" the OP-aged form to the native state with a quinone methide to re-alkylate the aged form of AChE,² along with subsequent reactivation: - Nosseir, O.; Hadad, C. Chemical Warfare Agents & Treatments; ACS In Focus; American Chemical Society: Washington, DC, USA, 2021. - 2. Zhuang, Q.; et al. *J. Med. Chem.* **2018**, *61*, 7034–7042. - 3. Weinert, E.: et al. J. Am. Chem. Soc. 2006, 128, 11940-11947. ## Methodology **QMP Synthesis:** QMPs typically synthesized with a Mannich reaction (R)-2-methylpyrrolidine **QMP Synthesis** Cost from Millipore-Sigma is This salt is efficient for the Mannich reaction Mid-Throughput Biochemical Ellman's Assay: **Assay Preparation** Indirect colorimetric assay to detect native Incubate AChE with OP Assay can be completed after QMP incubation with OP-inhibited or OP-aged enzyme Remove excess OP agent Incubate aliquot with 2-PAM to ensure enzyme is fully aged Incubate OP-aged enzyme with QMPs Assess AChE activity with Ellman's assay at time points #### Initial Resurrection QMP Family² - Electric eel AChE (24-hour QMP incubation) OP Agents and OP-aged forms of AChE #### 6-methylpyridin-3-ol based QMPs — manuscript in preparation - C. perl AChE monomeric human AChE hypothesized to be a better model for in *vitro* screening - Screening at 1 mM, 500 μM, 250 μM - 24-hour QMP incubation ### Observed increased resurrection: - Me-13 • Me-17 6-alkoxypyridin-3-ol based QMPs — manuscript in preparation C. perl AChE – monomeric human AChE *In vitro* resurrection after 12-hour QMP incubation at 250 μM: